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We consider the effect of a coating on the thermal and electrical resistance of a contact spot for a two-layer 

half-space. An analytical solution is presented. On the basis of the latter and using an approximation, we 

obtain rather accurate relations that can be used in calculations in designing contact conjugations with 

coatings. 

Calculation of the electrical and thermal resistance of coated bodies is of great practical interest. In electrical 

contacts, coatings made of noble metals are widely used to decrease contact resistance and friction. In a number 

of problems, for example, when the heat flux through an oxidized interface or a coated surface is calculated, it is 

necessary to know the thermal resistance of such a contact. The pressing nature of the problem has drawn the 

attention of many researchers. 
In [ 1 ] the influence of the coating of contacting surfaces on the contact electrical resistance is investigated. 

It is suggested that upper and lower estimates of the contact electrical resistance be made by subdividing the 

contraction volume by the current tubes and the equipotential surface, respectively. A deficiency of this calculation 

is insufficient accuracy. In [2, 3 ] the electrical resistance of point contacts was calculated for multilayer media. 

However, in these works solutions were obtained by numerical methods, and the results were presented in the form 

of graphs for, as a rule, separate values of the thicknesses of the coatings and their conductivities. 

In [4 ] the effect of a surface coating on the thermal resistance of an isothermal contact spot on a semiinfinite 

body is considered. The final solution is presented in the form of a series, an analysis of which made it possible 

to obtain simple relations for thin and thick coatings. Subsequently, results were obtained for an arbitrary density 

of an axisymmetric heat flux in a steady state and over short time intervals [5 ]. The solution was obtained in the 

form of rather complex series. 
Thus, the above brief review shows that despite substantial progress, an engineering procedure for 

calculating the electrical and thermal resistance for coated bodies is lacking. 

The aim of the present work was to obtain analytic relations suitable for engineering calculations of the 

electrical and thermal resistance of a plane circular contact for a two-layer conducting half-space. 

Let us calculate the electrical resistance of a circular contact of radius a for a half-space with electrical 

conductivity 72 having a coating of thickness A and electrical conductivity 71. 
The solution of this problem presupposes that the distribution of the potential is known for the circular 

contact for a homogeneous conducting half-space. Therefore we will solve an auxiliary problem, i.e., an electrical 

analog. It is necessary to find the distribution of the potential of a charged conducting oblate ellipsoid of revolution 

placed in a homogeneous dielectric medium with absolute dielectric permeability e a (Fig. 1). 

Let us write the equation of an ellipsoid in a Cartesian coordinate system [6 ]: 

22+  y2 Z 2 
+ - -  - 1 (1) 

2 j )  2 2 
c ( 1 +  c a  
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Fig. 1. Computational scheme for an auxiliary problem on the distribution of 

the potential of an oblate ellipsoid of revolution placed in a homogeneous 

medium. 

and give an equation for one-sheet hyperboloids of rotation that are orthogonal to the ellipsois: 

z 2 
2 -- ) C't" c (1 r 2 2 2 

- - =  1. (2) 

The equation for the half-plane passing through the OZ axis is 

Y =  Xtan  O .  (3) 

The dimensions of the ellipsoid are the following: 

c = a ~ ,  b = c o .  (4) 

To solve the problem, we use the coordinate system of an oblate ellipsoid of revolution a, r, ~o. Let us 

assume that a -> 0 and - 1 _< r _< 1. In this system, we write the Laplace equation for the potential ~o of the ellipsoid: 

{I  ] [ 1 V 2 . _  1 0 ( l + a  2) + 0  ( 1 -  2 ) _ ~  + 
a 2 (a2 + 2 )  0-~ Oa 

+ (1 + 0"2) i l  --  1:2 ) O~ 2 J 
(s) 

In the ellipsoidal coordinate system the potential of points of the field will depend only on the coordinate 
tT: 

~o = 7, (or), (6) 

and then the Laplace equation will have the form 

1 
3 a (O '2 + 1: 2) 

The solution of this differential equation yields 

a (1 + 0 "2) 
da da 

= 0 .  (7)  
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d~o c 1 
- p = C l a r c t a n a + c  2. 

a 2  ' 
dot a (1 + ) a 

(8) 

We will a ssume tha t  the  potential  of an infinitely distant  point is equal to zero: a --, oo, ~o ~ 0. T h e n  we obtain 

c 1 7~ C l ~  
a 2 + c2 0 ; c 2 2a " 

(9) 

Let us de te rmine  the electric field strength. Since 

E = - grad ~o, 

then in the sys tem of coordinates a,  r ,  0 we will have 

E = - V p  = 
O't'. 1,~ " 

a ~rd2- -~-~  d a  

Using the results  (8) and  (9), we obtain 

E = - " l  o 
+ J )   --77 

Reducing the minor  axis of the ellipsoid to zero, we pass in the limit to a charged circle for which a ~ O: 

Cl 
E = - z - z - ' l a "  

a T  

Converting to the Car tes ian coordinate sys tem and using Eq. (4), we obtain 

E = _ 
Cl 

2Vr Z+y a 1 2 
a 

Using Gauss '  theorem,  we shall convert to a polar coordinate sys tem in the X O Y  plane: 

Cl af 2:rrdr q 
D E = - - -  2 

a 0 ~ e a 

Having integrated this equation, we find 

q 
C 1 = -~J~A~eal �9 

Thus ,  for the charged circle the distribution of the potential along the O Z  axis in the ellipsoidal coordinate 

sys tem is expressed by  the relation 

q q arctan a .  
~o - -  Seal a 4Jreal a 

Convert ing to the Cartes ian coordinate system, we have 

q q arctan z (10) 
p (Z) - 8ea~ a 4:~eat a a 
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Fig. 2. Pattern of the field for a circular electrical contact in a homogeneous 

medium. 

Fig. 3. Scheme of replacement for a given problem. 

Passing to the problem of a circular electrical contact and a homogeneous medium, we will have the picture of the 

field depicted in Fig. 2 and the following distribution of the potential along the O Z  axis: 

I I z (11) 
7' (Z) = 47a 2~y----a arctan -'a 

In particular, for the potential of the electrode and its contact resistance we obtain 

I 1 
7 ' ( 0 ) -  4 y a '  R -  47a"  

This result coincides with a formula that is well known in the theory of electrical contacts [7 ]. 

Let us apply formula (10) to the solution of the initial problem, using again the method of electrical analogy. 

Suppose it is required that the potential be determined for a charged conducting circle located in a dielectric 

layer with dielectric permeability el. The remaining medium is homogeneous and has dielectric permeability e 2. 

We solve the problem by the method of multiple mirror images using the solution of Searle's problem for the mirror 

image for the interface between two dielectrics. Passing to the scheme of replacement (see Fig. 3) for the given 

problem, we will have an infinite sequence of charged disks, where 

e 1 -- e 2 e I -- e 2 
ql el + e 2 q ,  q2 el + e 2 q l  ()2 ( )  

e I -- e 2 e 1 -- e 2 

- ~1-~-~2  q . . . . .  qi = el + e  2 q '  ... 

The position of the charged disks is determined by the coordinate z and is equal to I Zl I -- 2A, I z21 = 4A, 

.... Izi[ -- 2iA. Let us determine the potential of the circle located at the point z = 0. From the principle of 

superposition we have 

q + 2 (  ql ql 2A)  
T (0) = 8eal a 8eal a 4areal---- ~ arctan --a 

qi qi 2iA 
+ 2 Seal a 4areal ~ arctan a + "'" 

+ ... + 
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TABLE 1. Comparison of the Values of the Functions fl and f2 

t 0 0.001 

fl 0 0.001 

f2 0 0.001 

6 , %  0 0 

0.01 

0.01 

0.01 

0 

0.1 1 2 3 4 5 6 7 

0.0997 0.785 1.107 1.249 1.326 1.373 1.406 1.429 

0.0969 0.740 1.131 1.338 1.448 1.506 1.536 1.552 

2.8 5.7 2.1 7.1 9.2 9.6 9.3 8.4 

8 

1.446 

1.561 

7.9 

10 

1.471 

1.568 

6.6 

100 

1.561 

1.578 

0.6 

t --~ CO 

n /2  

n t2  

0 

Denoting the ratio (el - e2)/(el + e 2 )  = k and grouping the terms, we obtain 

9"(0)= 8e~la+ ~ k i q ' -  ~ k'---g~q arctan(2i--~A) 
4e al a 27real a a " 

i = 1  i = 1  

Taking into account that 

~ el - e 2 
k i= k i -  1 - 2e-----~ 

i = 1  i = 0  

we have 

9' (0) = 4eala "2 + 2ea2 2~eala arctan 2i -- . 
i = I  a 

Finally we obtain 

q q i ~  1 eal -- ea2 a r c t a n  2 i  . 
9" (0) -- 8ea2 a 2v_real a "= eal + ea2 

Thus, the electric resistance of the contact for the original problem is 

1 1 ~ 71 - -  72 arctan 2i A (12) 
R - 472a 3rTla ~"1"= ~F1 + ~'----~ a " 

The above relations can be rewritten in the form 

Rc 4 1 - k  ~ k  i ( i 2 A )  (13) 
R0 - 1 ~ 1 + k arctan . 

i = 1  a 

Let us ex t r apo la t e  the  func t ion  fl = a r c t an  t, where  t = i .(2A/a),  by the  func t i o n  f2 = 

(~/2) (1-exp (-cO) in order that the derivatives of both functions be the same at zero 

1 I I = -- c exp ( -  ct) 
1 + t 2 2 t = 0 "  

t = 0  

Hence we obtain c - 2/~. 
A comparison of these two functions is given in Table 1, from which it is seen that the maximum error of 

approximation does not exceed 9 .6~.  With allowance for the approximation, formula (11) can be transformed to 

k ~arctan i = -5- 1 - e x p  - --2 = 
i = 1  i = 1  
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7r k ~r 
2 1 - k  2 

Then, incorporating formula (12) we obtain 

R e 
- - = 1  
R0 

4 1 - k  ~r k 
Jr 1 + k  2 1 - k  

1 - k  
w 

l + k  

So, finally we have 

Rc 4 1 - k  
- 1  

R0 Jr l + k  

kexp(4 ) 
7t" a 

( 4A) 
1 - k exp Jr a 

( 4A) 
k exp Jr a 

2 

1 - k e x p  ( 4 A )  
7E a 

l+ exp( 
,7/: a 

1-kexp(4 ) 
a 

kiarctan ( 2i A_ ) (14a) 
i=1 a ' 

Rc 1 - k 
R o - l + k  

4 A  
1 + k exp Jr a 

1 - k exp ( 4 A 
a 

(14b) 

where 

k = _ _  
Yl - 72. 1 - k 72 

Yl + 72 ' 1 + k 71 

Let us analyze these formulas: 

a) gl -- Y2 (homogeneous half-space, Ym -- Yo), k = 0, Rc/R 0 = 1, i.e., Rx/R 0 = 1/472a, which coincides 

with Holm's formula [7 ]; 

b) Yl ;~Y2, A - )  oo ( h o m o g e n e o u s  ha l f - space  wi th  Ym = Yc), Rc/Ro = 1, i . e . ,  Rc/R 0 = 1, i .e . ,  

Rc = RO = 1/4yla; 
c) A --) 0, Rc/RO = 1; 

d) 71 << 72, A << a. 
Neglecting the spreading in the coating, we have 

Rc A 1 1 (  4 Y 2 A )  - ~ + - - - - -  1 + - - - - - -  , 

ylJra 472a 472a Jr Yl a 

i.e., 

R c 4 72 A 
- - = I + - - - - - -  
R 0 Jr 71 a 

(IS) 

From Eq. (14b) for A/a  << 1, allowing for the fact that (1 - k)/(1 + k) = 72/Yl, we write 
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Fig. 4. Comparison of calculations by formulas (17a) and (17b) with the data 
of [4]: a) for21/22 > 1; b) for21/22 < 1: 1) according to [4]; 2) by formula 
(17a); 3) by formula (17b). 

l + k ( 1  4 A )  
Rc 1 -  k Jr a 4 72 A 

= 1 +  

l - k  1 - ~  

which coincides with expression (15). Thus, the relations obtained comply with possible particular cases. We shall 
go over to consideration of the thermal resistance of a circular contact spot for a coated body. 

According to the Wiedemann-Franz law, 7 -2 ,  and then, taking Eq. (12) into account, we obtain 

' 1 ( 1  R T -  422a n;ll a )l 1 +)l 2 arctan 2i---A . (16) 
i=1  a 

Thus, the formulas suggested for calculating the electrical resistance of the contact spot for a coated body 
are valid for calculating the thermal resistance. Finally we obtain 

RO 1 arctan 2i z ~ l + k  
i=1  

1 + k e x p  ( 4 A )  
Rc 1 - k  Jr a 

R 0 - 1 + k  
1 - k e x p (  Jr4 A)a 

(17b) 

where 

21 - 22 1 - k 22 
k -  - -  

2 1 + 2 2 '  1 + k - X 1 "  

An analysis of these formulas is given above. In Fig. 4 dependences of Rc/R 0 on the ratio of the coating thickness 
A and the contact spot radius for different values of 21/22 are compared. As is seen from the graphs, expressions 
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(17a) and (17b) proposed for calculating the thermal resistance of a contact spot for a coated body agree well with 
solution (22) obtained in [4 ]. 

Thus, the solution obtained allows one to take into account the effect of the coating on the electrical and 
thermal resistance of a contact spot for coated bodies. An approximation of this solution made it possible to obtain 
simple but rather accurate formulas that can be used in engineering calculations in the design of contact 
conjugations with coatings. 

N O T A T I O N  

~'1, 72, electrical conductivity of coating and base; A, coating thickness; a, radius of contact spot; e a, 
dielectric permeability of homogeneous medium; q, charge of ellipsoid; c and b, major and minor axes of ellipsoid 

(Fig. 1); 2a, focal length of ellipsoid; q, charge of circle (Fig. 3); e I and e2, dielectric permeability of the material 

of coating and base; Rc and R0, electrical resistance of contact spot for a body with and without a coating; 21 and 
22, thermal conductivity of coating and base. 
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